
Putting an Object-Oriented Face on a Toolbox Manager
How to Use OOP to Manage Toolbox Complexity

by Ralph Krug, P.E., Software Contractor

Abstract:

Most Macintosh Toolbox managers are complex units of code. To successfully use a Toolbox
Manager, a programmer has to wade through a lot of documentation (Inside Macintosh, Tech
Notes, magazine articles) and perform empirical tests. The details of how to use a Toolbox
Manager are spread out in an ocean of words and a void of blind tests. Object-oriented
programming (OOP) is supposed to provide techniques to encapsulate this kind of complexity.
In this paper, I explore the use of OOP to encapsulate a Toolbox Manager.
Macintosh programming is based on the Macintosh
Toolbox. The Toolbox, which resides mostly in ROM,
provides sophisticated control of the machine that is
Macintosh. The Toolbox is broken into many
managers, from biggies like TextEdit and QuickDraw
to lesser-knowns like the Deferred Task Manager
and the Sound Manager. Eventually, mastering
Macintosh programming means mastering the
Toolbox Managers.
Most Macintosh Toolbox Managers are complex
units of code. To successfully use a Toolbox
Manager, a programmer has to wade through lots of
documentation and perform empirical tests. The
details of how to use a Toolbox Manager are spread
out in an ocean of words and a void of blind tests.
Object-oriented programming (OOP) provides
techniques to manage this kind of complexity. With
OOP, you can package a complex body of procedural
code in a way that makes it simpler to use. At the
same time, you can access the underlying power
through customizing add-ons to the OOP package.
This paper explores the use of OOP to manage
complexity in Macintosh programming. In
particular, the paper considers how to encapsulate a
Toolbox Manager. After describing the motivating
context, I propose an approach for the design and
implementation of an OOP wrapper for a Toolbox
Manager. An OOP wrapper is an object-oriented
class structure that hides complexity as much as
possible, while retaining the ability to access the full
power of the target Toolbox Manager.

An aside: At times in this paper, I’ll ramble on
about Mac programming in general, how we Mac
programmers have a hard lot, and other aspects of
Mac programming that you may already know only
too well. Please bear with me. I hope to pass on
some useful insights on OOP programming that I

learned through four years of MacApp
programming. Think of the stuff you already know
as syntactic sugar or commiseration material.

Another aside: Although my experience has been
with MacApp, the complexity-reducing techniques
I describe in this paper should apply equally well
in other OOP environments on the Mac. Also, the
overall technique applies to any system of
complex procedural code, not just Toolbox
Managers.

The Macintosh Programmer’s Context

As a Mac programmer, you have to deal with the
Toolbox. Most Toolbox Managers include many
constants and functions that interact in precise (and
often obscure) ways. You have to understand a lot of
details before you can begin to use a Toolbox
Manager correctly.
In your attempts to understand a Toolbox Manager,
you typically have to haul out many voluminous
documents and spend lots of time wading through
them. To really understand a Toolbox Manager, you
have to read and understand the appropriate
chapters in Inside Macintosh, any applicable Tech
Notes, and the appropriate portions of the Q & A
Stack, if any. And then, if you still need answers,
you may end up checking on-line conferences and
archives,

Page 1 Putting an Object-Oriented Face on a Toolbox Manager

magazine articles, and books. Inside Macintosh
sometimes lacks crucial details on how to use
Toolbox code and occasionally leaves gotchas for
you to discover the hard way.
After you’ve spent more time than you care to on
research, you end up concluding that the available
documentation is inadequate. Nevertheless, you
need to produce working code, so you bite the bullet
and continue the research or (more likely) you begin
trying something—anything. The latter approach
amounts to the empirical research phase of
Macintosh code development and can consume vast
quantities of time.
If you get lucky and do find the answers you seek in
Inside Macintosh, beware of out-of-date and
erroneous information. You can hope, but the Tech
Notes and Q & A Stack do not always make up for
Inside Macintosh’s errors and omissions. If you run
into misinformation, you end up in the empirical
research phase quicker than you can finish a
compile in MPW.
So how do you deal with this complexity? You can
only try to manage it—divide, hide, and conquer.

Using OOP to Manage Complexity

The main benefit of object-oriented programming
(OOP) is its ability to package complex chunks of
code in a reusable and extendible way. An OOP
implementation of a Toolbox Manager can hide
much of the underlying detail. At the same time,
you can access the full power of the underlying code
by overriding the default behavior wherever
necessary. This is how OOP manages complexity—
you can access the code at the desired level of
abstraction and ignore the lower-level complexities.
(Of course, somebody has to worry about the lower-
level complexities—more on that later.)

A personal example: In 1987, I came to the
Macintosh programming world from a background
in minicomputer-based UNIX and Pascal. I had a
terrible time trying to write even a simple
program in Lightspeed Pascal. Lightspeed Pascal
seemed great, but the small changes I made to the
example applications left me staring at the
MacsBug screen. So I tried MacApp. MacApp is,
in effect, a collection of OOP code that hides the
details of the basic Toolbox Managers. MacApp
hid the Toolbox (and other) details well enough to
let me accomplish some programming without
crashing immediately. In fact, I referred to Inside
Macintosh very little in four years of MacApp
programming. Then I got a project that had me
delving into the depths of TextEdit. I learned
quickly how devastating (in time and missed
deadlines) a Toolbox Manager can be.

Usually, to simplify a complex piece of code, you
have to pay the price of reducing its functionality.
This is not the case when using OOP. Yes, an OOP
implementation simplifies by making assumptions.
And yes, those assumptions effectively reduce
functionality to certain default cases. But, with OOP,
you can override any part of the default code to suit
your needs. Overriding does not mean a major
rewrite of the existing code—the existing code
remains as-is and usable. Overriding means adding
chunks of code that effectively customize the
existing code to achieve specialized functionality.
In this way, a well-designed set of OOP classes (data
and procedure encapsulations) allows a programmer
to access underlying functionality at several levels of
complexity. The top level is the simplest, hiding as
much complexity as possible by making assumptions
and defining defaults wherever feasible. Lower
levels are based on the more-general top level, but
include customizations to produce useful variations
of the default behavior.

OOP and the Toolbox: No Free Lunch

Although an OOP implementation of a Toolbox
Manager can manage its complexity, there is no free
lunch. Before you can reap any benefits, you must
create or obtain said OOP implementation of a
Toolbox Manager.
If you create the OOP implementation yourself, you
have to learn all the details of the target Toolbox
Manager. Of course, this defeats the goal of
avoiding Toolbox complexity. Creating the OOP
implementation yourself must be seen as an
investment: benefits accrue in the future when you
(or your colleagues) can reuse the code.

The question remains as to whether you can afford
such an investment. On the other hand, can you
afford to reinvent the code each time you need it?
Can you afford to maintain several different
versions of code that implements very similar
functionality? This conflict amounts to the usual
tradeoff between short-term and long-term
benefits.

Page 2 Putting an Object-Oriented Face on a Toolbox Manager

If you can find an already-developed OOP
implementation, then you can benefit immediately.
MacApp and the Think Class Library provide OOP
environments that cover the main Toolbox Managers
that relate to user-interface implementation.
However, there are many Toolbox Managers that
these environments do not cover. Beyond what your
development environment can provide, you are not
likely to find an OOP implementation for a given
Toolbox Manager. Very few reliable, commercial-
quality OOP components exist, either for sale or
free. In particular, I know of no stand-alone OOP
implementations of Toolbox Managers.

To use MacApp or the Think Class Library, you
have to buy off on a whole programming approach
to gain the benefits. You have to base your
software on the generic framework supplied,
which means you have to adapt your existing code
to the new environment. Furthermore, in the case
of MacApp, the shift means an additional
investment in extra memory and fast hardware.
C++-based MacApp 3.0 is tremendously resource
hungry (and still very slow to compile).
Nevertheless, MacApp and the Think Class Library
are primary means to obtaining usable OOP code.

Wrapping Your Own

Let’s assume you want to take a stab at OOP and
create your own OOP wrapper for a Toolbox
Manager. Say you decided that the expected
benefits justify an investment of time and effort
toward creating the wrapper. How do you approach
using OOP to put a friendlier face on a Toolbox
Manager? The rest of this paper proposes an
approach that can help you.

Whether or not you currently use MacApp or the
Think Class Library (TCL), you can employ the
wrapper technique described here. Actually, OOP-
based Toolbox wrappers are a good way to get
started in OOP without the complete conversion of
approach required by MacApp or TCL.

Do Your Research

Macintosh programming is a complex undertaking,
as described earlier. The first step in any complex
undertaking is finding whose shoulders you can
stand on. This means finding all the documentation
and example code that applies to your task.
Read Inside Macintosh
Find the chapters of Inside Macintosh that pertain to
your target Toolbox Manager. Inside Mac is
something of an ongoing history of the Mac and its
Toolbox, so check the earlier volumes for historical

background. Often the complete description of a
Toolbox Manager is spread out over two or more
volumes. (This happens when the chapter on a
given Toolbox Manager describes only the changes
to that manager since the previous volume was
published.) Remember that Inside Mac is not
perfect, it may not cover some important details and
some information may be outdated.

Inside Macintosh is a six-volume set of manuals
written by Apple and published by Addison Wesley.
You can find Inside Macintosh in many bookstores
—even in national chain bookstores in shopping
malls! You can also obtain Inside Macintosh from
several mail-order outfits that advertise in
MacWorld and MacUser magazines.

Check the Tech Notes
To minimize discovering problems the hard way,
check the Macintosh Developer Technical Notes
(Tech Notes) for pertinent information. The Tech
Notes supply clarification of Inside Mac chapters
and information that Inside Mac left out. But, as
with Inside Mac, the information may not be
complete and may be outdated by the time you read
it. Always be prepared for things to work differently
than you’re told.

Macintosh Developer Technical Notes are
available from APDA, Apple’s mail-order
development tools distribution division. For
further information on APDA, call 800-282-2732
(from US) or 800-637-0029 (from Canada) or 408-
562-3910 (from other countries).

Check the Q & A Stack
The Q & A Stack is a Hypercard-based compilation
of “the most common and informative question DTS
receives from developers” (to quote its opening
card). Open up the Q & A Stack and see if there are
any pertinent questions and answers regarding your
target Toolbox Manager.

The Q & A Stack is available on the Developer CD
Series CD-ROMs from Apple. To obtain a
subscription to the Developer CD-ROMs, you must
enroll in Apple’s Associates and Partners Program
or order the Developer Resource Kit from APDA.

Page 3 Putting an Object-Oriented Face on a Toolbox Manager

Look for Pertinent Example Code
This one is important. You want to use pre-written,
pre-tested code if you can. As always, you have to
be careful. The code you find can be problematic in
many ways:

• The code may not be as well tested as you had
hoped: You find bugs, try to fix them, and—
because of creeping code revision—end up
losing the advantage of starting with existing
code.

• The code may include portions that are
obsolete: You find problems due to changes in
system software or Mac hardware. The
revisions required to fix the problems could
erase the advantage of using existing code.

• The code may be poorly suited to OOP: You
find the code to be so interrelated and non-
modular that breaking it up into OOP classes is
impractical; you are better off re-designing
from scratch.

You can look for example code in several places.
Development environments typically come with
examples to help you get started. On-line
information services (such on America Online,
Compuserve, and Internet) can provide source code
of many different qualities. However, the most
useful example code regarding Toolbox Managers is
on Apple’s Developer CD-ROMs.

Example code and lots of other useful developer
information and tools (including the Q & A Stack,
an electronic version of Inside Mac, and the Tech
Notes stack) are available on the Developer CD-
ROMs.

Remember Compatibility
Keep in mind that different versions of the System
Software and different models of the Mac mean
different capabilities of the Toolbox. A good Toolbox
Manager wrapper encapsulates the details of which
resources are available in which combinations of
System Software and Mac hardware.

To behave properly on all Macs under all systems,
good code must ensure that all the Toolbox
components it needs are available and of an
acceptable version. The Gestalt Manager (another
Toolbox Manager!) helps with this aspect of Mac
programming. (Be careful, the Gestalt Manager
may not be available itself!) If, after checking the
launch-time Mac environment, an application finds
that the current environment is not adequate to
run the main code (and there are no alternatives
available), it can exit gracefully.

Create a Design

Once you have done some research and have a good
idea of the target Toolbox Manager’s capabilities
and requirements, you can create a complexity-
reducing design. There are several steps in creating
the design. Start by reiterating the goals of the
project to make clear what the design must achieve.
To create a first take at the design, derive a
comprehensive structured model of the target
Toolbox Manager from the documentation and
example code found in the research phase.
Then shift perspective: reshape the structured
model into a version suitable for an object-oriented
implementation. An object-oriented model defines
components in ways that support useful
combinations and extensions of the components.
From an implementation perspective, the object-
oriented model abstracts functionality to maximize
code reuse and consistency.
Finally, invest the time and effort required to iterate
over these steps until you refine the concepts and
plans as much as possible. Making worthwhile
changes is easy at this early stage; later, changes
are more costly.
The following subsections explain these steps
further.
Identify the Goals
The start of a development plan is a good time to
identify and reiterate the goals of the project. The
goals of a Toolbox Manager wrapper are to:

• manage complexity
• maximize ease-of-use
• provide high-level access
• allow for low-level access
• provide extendibility
• maximize reusability
• minimize overhead

Of course, these goals overlap, interrelate, and
conflict to varying degrees. You will shape these
fuzzy goals into a useful design in later steps. In

Page 4 Putting an Object-Oriented Face on a Toolbox Manager

this step, the idea is to clarify the overall purpose of
the wrapper code.
Derive a Structured Model
To get a good start on the design of a wrapper,
develop a structured model of the target Toolbox
Manager. By “structured model,” I mean a well-
organized, hierarchical specification of the
capabilities and details of the Toolbox Manager.
The structured model you create should be well
organized with respect to the goals identified above.
For example, it should help manage complexity by
making clear what the Toolbox Manager can do and
what it requires to carry out its tasks. It should also
maximize ease-of-use through hierarchical ordering.
Hierarchical ordering simplifies by abstracting the
functionality and details of the Toolbox Manager.
To begin development of a structured model, read
the pertinent chapters of Inside Mac and outline
them. Using your favorite software outliner, pore
over the documentation and make notes as you go.
Periodically, step back and see if the pieces are
falling together. Rearrange the notes within the
outline to make them fall into a structure that makes
sense. Use the hierarchical power of outlining to
categorize and abstract the many details of the
target Toolbox Manager.
Then, go back to the other sources of information
identified in the research phase (the Tech Notes, Q
& A Stack, example code, etc.). Mix the details from
these sources into your outline. Determine where
the new details belong, and correct, update, and
expand the outline as you go.
This process should yield a comprehensive model of
the target Toolbox Manager. The hierarchical
structure of the outline should help you navigate
among the sea of details.
Derive an Object-Oriented Structure
The next step constitutes a perspective shift. In the
previous step, you derived a comprehensive,
hierarchical model of the target Toolbox Manager as
a whole. In this step, you revise the model as
necessary to create an object-oriented design that
meets the overall design goals. The revision process
consists of dividing, combining, and rearranging
parts of the comprehensive model until it achieves
the goals to the highest degree possible.
At this point, OOP development turns into an art.
There is no well-established, recipe-like approach
for creating a good OOP design.

There are several formalized methods of object-
oriented design and analysis (OOD/OOA). My

impression—based on limited reading of
journal articles—is that they do not apply well to
Macintosh programming. They appear to
concentrate on data flow, providing methods for
producing an OOP design to handle the required
flow of commands and data. In the Mac approach
to software, event flow is as important or more
important than data flow. The formalized
OOD/OOA methods documented in periodicals
such as the Journal of Object Oriented
Programming and Object Magazine seem to
ignore event flow.

A new book, “Developing Object-Oriented
Software for the Macintosh” by Neal Goldstein
and Jeff Alger (part of the Macintosh Inside Out
series, published by Addison-Wesley), caused a stir
at the latest MADA (MacApp Developers
Association) Conference. Judging from a
presentation given by Jeff Alger at the previous
(1991) MADA Conference, I think the Goldstein-
Alger approach (named “Solution-Based
Modeling”) shows great promise. I look forward
to exploring Solution-Based Modeling further.

In lieu of a reliable method, you have to learn by
example and by doing. For example, careful study of
MacApp’s structure, along with experience using
MacApp, helps you learn what good OOP is and
what to avoid.
A good starting point is to use the Model, View,
Controller (MVC) approach. (The MVC approach
stems from the Smalltalk development world.)
Roughly speaking, the MVC approach categorizes
the code of an application into three types: Model,
View, and Controller. Models correspond to data
structures of the application, Views display
information in the application, and Controllers
manage the interaction of Models, Views, and the
user.

A weakness of the MVC approach is that it is often
difficult to separate code into one of the three
categories. There is often a combination of Model,
View, and Controller aspects in even the smallest
chunks of code. Breaking the code into chunks
that are strictly Model, View, or Controller would
often be impractical due to excessive overhead.
Therefore, I suggest that you apply the MVC
approach with a grain of salt. Use the MVC
approach as a good starting

Page 5 Putting an Object-Oriented Face on a Toolbox Manager

point, but don’t be a slave to the process of
dividing code into Models, Views, and Controllers.
Use your judgment to decide when further MVC
division serves no useful purpose, then move on.

Define Models
Factoring Models out of the structured model is
usually straightforward. Models constitute the data
structures of the structured model. Go through the
structured model outline and define a Model for
each coherent collection of data records.
The sometimes difficult part of this step is
determining where to draw the lines separating the
data components into Models. When in doubt, try to
create least-common-denominator Models that can
combine in the greatest number of meaningful ways.
Remember that you can build larger Models from
smaller ones as necessary.
Define Views
Should the wrapper provide Views, or should the
application that uses the wrapper provide the
Views? The answers are yes and yes.
Typically, the Views associated with a Toolbox
Manager are quite basic. Also, the target Toolbox
Manager may already provide some standard Views.
(For example, the Standard File Package supplies
standard dialogs for opening and saving documents.)
A Toolbox Manager wrapper should provide Views in
the same way that some Toolbox Managers provide
standard dialogs. The wrapper can provide
standard Views to give the programmer a ready-
made user interface to the target Toolbox Manager.
The application that uses the wrapper can always
ignore, modify, or replace a wrapper-provided View
if it is not appropriate.
Define Controllers
In a Toolbox Manager wrapper, Controllers provide
the higher-level programmer’s interface to the
Toolbox Manager. Controllers provide this interface
by combining calls to lower-level Toolbox Manager
routines with procedural knowledge of how the
Toolbox Manager works. In this way, the Controller
packages the complexity of the Toolbox Manager.
To define the Controllers for your wrapper, think of
how you would like to use the target Toolbox
Manager. Create a Controller (or family of
Controllers) for each high-level operation you would
like to have for the given Toolbox Manager. At this
point, the sky is the limit—you can define as much
functionality as you want. (Of course, somebody still
has to implement it…)

Evolve and Refine the Design
Software development is never a linear process.
Iteration is certain. Embrace the inevitable iteration
—rethink your design again and again. With each
iteration you understand the details better and see
the whole more clearly.
Think of this iteration as a worthwhile investment,
for changes and refinements made at this stage are
less costly than those made later. Do as much of the
design work at this stage as you can stand. Design
work in the later stages is also inevitable, but we
can at least try to minimize it.

Implement the Design

Once you have a good design, you can begin
converting it into code. In general, the OOP classes
you create will correspond to the Models, Views, and
Controllers in your design.
At this stage, try to maximize code reuse through
the creation of abstract classes. You create an
abstract class by factoring out code and data
common to two or more existing classes and
transferring code and data into a new abstract
ancestor class. Along the way, the implementation
becomes a hierarchy of abstract and derived classes.
When you finish, the Models, Views, and Controllers
of your design will lie somewhere near the bottom of
the hierarchy, descended from abstract classes that
encapsulate shared code and data.
If you have many Models, Views, and Controllers to
implement, you might want to plan more than one
wave of implementation. The idea is to tackle a core
group of the Models, Views, and Controllers first,
then a more peripheral group, and so on. This
approach will yield usable code sooner.
Convert Models into Classes
The Models in your design primarily represent data,
whereas OOP classes are packages of data members
and member functions. Good OOP practice requires
that the accessible data of a class be accessed
through member functions. This practice allows
descendant classes to override the data-access
member functions when necessary to customize
functionality.

Page 6 Putting an Object-Oriented Face on a Toolbox Manager

The terms “data member” and “member function”
are C++ terminology. The equivalent terms in
Object Pascal terminology are “field” and
“method,” respectively.

You can also take advantage of access functions to
maintain consistency and validity among the data.
To do so, write the code to check for consistency and
validity with each access of a data member. An
inconsistent or invalid value can then call on a
Controller object to handle the situation.
Convert Views into Classes
The Views of your design convert into classes that
maintain the user interface portions of your
wrapper.
User interaction with a View causes the View to
update itself accordingly. The View can then call the
appropriate Controller, if necessary, to propagate
the event or change of data.
In general, a View should not change a Model
directly. Let a Controller handle the change. This
approach concentrates the procedural knowledge of
the code in Controllers instead of spreading it out
among Views and Models. Confining procedural
knowledge to Controllers helps make the resulting
code maintainable and flexible.
Convert Controllers into Classes
Controllers tie Views and Models together.
Controller objects convert a user command or
system event into actions that eventually update
Views and Models.
Higher-level Controllers can also trigger a
combination of lower-level Controllers. You can use
this approach to maintain consistency in an
application. For example, Controller A always works
the same way, whether called from Controller
context X, Y, or Z.
Factor Out the Abstract Classes
As you write code to implement the Models, Views,
and Controllers of your design, you will find classes
that have significant similarities. You can
consolidate code by combining these similarities into
abstract classes. An abstract class serves as an
ancestor class, providing data members and member
functions needed by two or more subclasses.

Reiterate Ad Infinitum

In software development, you cannot execute a
series of steps once and expect code to work
(project plans notwithstanding). Code design and
implementation consists of ongoing cycles: you loop
through a series of steps numerous times, making a
little progress with each repetition (hopefully). As
you make progress, you can drop some steps and
add some new ones. So it is with OOP, which adds
the steps “make the code reusable” and “make the
code extendible” to the overall sequence.
During the design stage, you loop within the outline,
refining your design while it’s still very easy to do.
This is where you decide what you want to see when
you are done, in as much detail as possible.
During the implementation stage, you draw up some
classes, then divide them and recombine them to
form a class hierarchy that meets both the
functionality goals and the code-reuse goals.
Then, during the testing stages, you go back and
rework the basic design and class structure as new
information dictates.
Reiterate over these stages until you are satisfied
that the goals have been met. (More likely, you
iterate until the deadline can be postponed no
more!)

Conclusion

I hope this paper helps you employ the power of
OOP in your software development. As with most
things in life, OOP requires that you invest
significant time and effort before you can reap its
benefits of flexible, reusable code. I hope this paper
helps in the process.

Lastly, I want to explain the appendix. Long
before I started this paper, I started work on an
OOP wrapper for the Sound Manager (mostly as
an experiment). The appendix contains the raw
outline as I left it many months ago. It is not
complete and very rough, but it may help you
visualize the concepts presented in this paper.
Take a look, but be kind; the outline in the
appendix is an unpolished, unfinished work in
progress.

Page 7 Putting an Object-Oriented Face on a Toolbox Manager

Appendix: An Unfinished Sound Manager Wrapper Outline

I. Sound Manager MVC:
 A. model:
 1. square-wave sound sequence
 a) frequency/rest vs. time specs
 2. wave table sound sequence
 a) frequency/rest vs. time specs
 b) wave table(s)
 3. sampled sound sequence
 a) play/rest vs. time specs
 b) sample(s)
 c) sampling rate(s)
 d) playback rate(s)
 B. view:
 1. the controller window (optional)
 a) provides graphic feedback that the sound is playing
 (1) may show a progress/“time remaining” indicator
 (a) -- shows elapsed/remaining time (in text/numbers)
 (b) -- shows progress via sideways thermometer
 b) is optional--the application doesn’t have to initialize and show it
 c) can optionally include the following indicator sub views:
 (1) a stop button -- hilites when sound sequence is halted
 (2) a play button -- hilites when sound sequence is playing
 (3) the sample’s sampling rate at recording
 (4) a playback rate--indicates the playback sampling rate
 C. controller:
 1. the sound manager
 a) initializes system software/hardware
 b) plays sounds (via sound channels and controller window)
 (1) provides/disposes channels upon request, using the specified channel characteristics
 (2) passes the sound sequence to the sound channel
 (3) if so directed, displays a controller window to allow user control of sound playback
 (4) returns control to caller ASAP or when sound is complete, as directed
 c) provides error codes to the calling routine and displays user alerts (if so directed) for error/exception conditions
 d) cleans up when done
 2. the sound channel
 a) handles acquisition of sound data from resources and/or files as necessary
 b) plays a given sound sequence
 c) handles user interrupts (CMD-.)
 d) releases the hardware ASAP (to avoid hardware conflicts/crashes)
 e) returns error codes to sound manager
 3. the controller window (optional)
 a) halts play when user clicks a stop button (leaving the “sound pointer” at the stopping point)
 b) initiates/resumes sound sequence play when user clicks a play button
 c) stops the sound and returns the “sound pointer” to the beginning of the sound sequence when user clicks a reset
button
 d) stops the sound, resets the “sound pointer” to the beginning of the sequence, and plays the sequence again when
user clicks a replay button
II. Setting up a sound sequence
 A. TSoundSequence -- abstract class
 1. TSquareSound
 2. TWaveSound

Page 8 Putting an Object-Oriented Face on a Toolbox Manager

 3. TSampledSound
 B.
III. Using the Sound Manager
 A. Initialize
 1. TSoundManager.ISoundManager().
 B. Play sound
 1. check if resources are available: If CanPlay(specs, errID) Then ...
 a) CanPlay(specs:TSoundSequence; errID:Integer) sets up a channel with the given specs and returns true if all is
OK/goes OK
 b) if CanPlay finds a problem (e.g., no available channel, CPU overloaded, sound file not available,…), it returns False
and puts an appropriate error number in ‘err’.
 c) the calling routine can then call a TSoundManager method to alert the user…
 2. play the sound -- DoPlay() , PlayNotes(),
 a) DoPlay(specs:TSoundSequence) -- play the sound specified by specs
 b) PlayNotes(noteSequence:TNoteSequence, specs:TSoundSequence) -- play the square wave sounds spec’d by
noteSequence
 c)
 3. modify sound/channel characteristics
 a) Modify(specs:TSoundSequence; modList:Xxxx)
 4. release sound resources/reservations
 a) FinishedPlaying(specs:TSoundSequence)
 C. close sound manager (to reduce memory req’ts...)
 1. TSoundManager.Close
IV. Sound Channel
V.

Page 9 Putting an Object-Oriented Face on a Toolbox Manager

